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Complex Variables - 1

3.1| Introduction

We are well acquainted with several concepts associated with a real valued function

y = f(x). We introduce complex valued function w = f(z) [function of a complex
varigble z] and discuss some topics associated with it.

3.2| Recapitulation of Basic Concepts

A number of the form z = x+{y where x, y are real numbers and i = V-1 or

#=-1 iscalleda complex number. x iscalled therealpartof z and y iscalled the

imaginary part of z.

Also z = x—1iy is called the complex conjugate of z.

r 2 2 AP
We have e"--l+1!+2 TR TR
ix ix 2 i o At PP
e-1+1,+2!+3'+4'+5!
. = 1t 21 31t s
ix x2 x4 x3 x5
or € = l—ﬂ-!-:l—!— + i x- §T+—T~—
Thus ¢* = cosx +isinx ...

by Maclaurin’s serjes.
Hence ¢ (%) = cos(—x)+isin(-x)
or e;i”=cosx—isinx ...(2)
Adding and subtracting (1) with (2) we have
X e“- X 1x =X

, e —e
and sinx = ;
2i

CoOs X =
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ei{l’x)+e—i(ix) X4

cos(ix) = 5 = 5 = cosh x
T A G R e T L S T o 2 N
sin(ix) = % == = o7 = 5 = isinhx

Thus cos(ix) = coshx and "sin (ix) = isinhx
De-Moivre’s Theorem

(cosO+isinB)" = cosnB+isinn®, where n isa real number.
Geometrical representation of z = x + iy (Argand diagram)

We plot the point P(x, y) inthe x-y plane and draw PM perpendicular to the
X-axis.

Ay

Px y)

0 x M rX

A
Let OP = r and POM = 0. From the figure we have
¥

X .
cos B = , sin@ = "

v
x =rcosB, y = rsin®

Eliminating © (by squaring and adding) and r (by dividing) we obtain,
L+t = 7 and y/x = tan 0

or r=\sz+y2 and 0=tan_1(y/x)

z=x+iy =r(cosB+isin0)

Since cosB+isin® = €%, z = r ¢® is called the polar form of z.

r=Vx*+1y* is called the modulus of z and 6 = tan"l(y/x) is called the
amplitude of z or argument of z. Symbolically we write these as follows.

| z | =r=VZ+y and ampz or argz=8=tarl-1 (y/x)
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Properties associated with the modulus and amplitude
L (a)|Zl'Zz|=|21|'|22|

(b) amp (z,-2,) = amp 2z, + amp z,

2, | EN
1
2 @ | ]|=

=2 1zl

(2]
(b) amp |\Z—2)|= amp z, -~ amp z,

3. |z, +2, | € |z | +]2,]
4. lz)~z, | 2 |z |-|2]|

Neighbourhood : A neighbourhood of a point z; in the complex plane is the set of
all points z suchthat | z—z;| < & where 3 is a small positive real number.

Geometrical meaning: If z, = x,+iy, then

lz—zy| = | (x+iy)-(xg+iyg) | = | (x=x)+i(y—yy) |

V(x-x)° +(y -y,

fe., | z-zy |

Now |z-z;| =38 is \/(Jc—xo)2+(y—‘t,r0)2 =8 ’
ie., (x—-xo)2+(y—y0)2 = 8
This represents a circle with centre (X, y,) and radius 8.

Geometrically a neighbourhood of a point E‘o (ie. | z—z,| < &) is the set of all
points inside a circle having z, as the centreand & as the radius.

3.3| Function of a Complex Variable, Limit, Continuity and
Differentiability

Function of a complex variable

If it is possible to find one or more complex numbers w for every value z ina certain

domain D, we say that w is a function of z defined for the domain D. In

otherwords w = f(z) is called a function of the complex variable z. w is said to be

single valued or many valued functionof z accordingas foragiven valueof z there
corrresponds one or more than one value of w.
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Since z=x+iyorz=ré’

we always write
w=f(z)=u(x,y)+iv(x, y) [Cartesian form]
w=f(z)=u(r, 8)+iv(r, @) [Polar form]

Examples :

1. Consider f(z) = 2>

ie, u+iv=(x+iy)? = & +2xiy+ iy

or u+iv = (L-y*)+i(2xy)
= u=:t¢2—_1/2 and v = 2xy in the cartesian form.
Also in the polar form f(z) = f(re'®) = (re®)?
ie., u+iv = rPeti®
= rz(c0528+isin29)

= u;rzcosze and v = %sin20
2, Consider f(z) = logz

It is convenient to find % and v in the polar form by taking z = r ¢0

Wehave, u+iv = log(re'®) = logr+ifloge. But log,e = 1
u+iv =logr+i@
= u=1logr and v = 0 in the polar form.

Since we know that r = \/x2+y2 and 6 = tan~ ! (y/x)

u = log X +y and v = tan” ! (y/x) in the cartesian form.

Limit : A complex valued function f(z) defined in the neighbourhood of a point
z, is said to have a limit | as z tends to Zg, if for every £ > 0 however small

there exists a positive real number & suchthat | f(z)-1!| <
when z-z,| <38 Thisiswrittenas lim f(z) =1/

o 4
1}

Continuity : A complex valued function f(z) issaid tobe continuous at z = z; if
f(zy)) exdstsand Hm f(z) = f(z,) ‘

—_
z Zo

0

Thatistosay that | f(z)-f(z;) | <& when |z-z,| <3.
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Differentiability : A complex valued function f(z) is said to be differentiable at
f (z) _f ( Zn )

z = z, if lim S exists and is unique. This limit when exists is called the
z29z 0
0

derivativeof f(z) at z = z, and is denoted by f "(zg)-
Suppose we write 82z = z-z; , then z — z, implies that 6z —0

‘ zZ . +dz)-f(
Hence, f'(z,) = lim /7 )7/ (%)
8z—-0 bz

Further f(z) is said to be continuous / differentiable in a domain or a region D if
f(z) is continuous / differentiable at every point of D.

These definitions are analogous with the definitions of a real valued function.

3.4| Analytic Function and Connected Theorems

A complex valued function w = f(z) is said to be analytic at a point z = z, if
dw _ g I f(z+8z)-f(z)

520 8z
neighbourhood of z, Further f(z) is said to be analytic in a region if it is analytic

exists and is unique at z; and in the

at every point of the region.

Analytic functionisalsocalleda regular function or holomorphic function. We can as well
say that f(z) is analytic at a point z; if it is differentiable at z, and in the
neighbourhood of z,.

Theorem-1 [Cauchy-Riemann equations in the cartesian form]

The necessary conditions that the function w = f(z) = u(x , y)+iv(x, y) may
be analytic at any point z = x +iy is that, there exists four continuous first order

partial derivatives %u;’ %, g—z,% and satisfy the equations
%u = @ and % = _ou These are known as Cauchy-Riemann (C - R ) equations :
dx dy dx dy

¥ =0, and v _= -4,

Proof : Let f(z) beanalytic ata point z = x +iy and hence by the definition,

It f(z+8z)-f(z)
8z

f(z)=

exists and is unique.
6z-0

Inthe cartesianformf(z) = u(x, y)+iv(x, y) andlet 8z betheincrementinz
corresponding to the increments dx, 8y in x, y.
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[u(x+8x, y+5y)+iv(;r+8x, y+dy)]-[ul(x, y)+iv(x, y)l

f(z)= It

8§z—0 bz
, [u(x+dx, y+Oy)-—u(x, y)]
friz)= 1t
§z—0 6z
i lt [v(x+8x, y+dy)-v(x, y)] )

5z

3z-0
Now 8z =(z+8z)~2z where z = x+iy
Sz =[(x+dx)+i(y+dy)]-[x+iy]
ie., 3z =08x+idy
Since 3z tends to zero, we have the following two possibilities.
Case (i) : Let 8y = 0 sothat 8z = 8x and 8z—0 imply dx—0.
Now (1) becomes

v(x+06x, y)-v(x, y)

u{x+dx, y)-u(x, y) Ll
&x

8x

t
dx—>0

f'(zy= 1

dx—0
These limits from the basic definition are the partial derivativesof ¥ and v w.rt. x.
du .ov

frlz) =2+ i .. {2
Case (ii) : Let 8x =0 sothat 8z = i8y and 8z—0 imply i8y — 0 or
dy = 0.
Now (1) becomes
fr(z)= It u(x,y+5.3g)-u(x,y) ik v(x,y+5.1g)-—v(x,y)
But 1/i = i/i* = i/=1 = —i and hence we have,
flz)= Ut —i- u(x, y+dy)-u(x, y) . B v(x, y+8y)-v(x, y¥)
3y—0 dy 5y—0 oy
¥y dy
dv .du

Flar= 2o .3
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Equating the RHS of (2) and (3) we have,
ou .dv dv .du

n T By—zay

Now equating the real and imaginary parts we get,

w_w W
ox dy dx Oy
Thus we have established Cauchy-Riemann equations: u_ = vy and v_= -u,

These are the necessary conditions in the cartesian form for the
complex valued function f(z) = u+iv tobe analytic.

Theorem-2 [Cauchy-Riemann equations in the polar form]

If f(z) = f(ré®) = u(r, 0)+iv(r, 0) isanalytic at a point z, then there exists

u v ov and satisfy the

"
our continuous first order partial derivatives — —
f fi v o’ 90’ or’ 30

equations :
w_1d -1
ar r 90 or r 90

These are known as Cauchy-Riemann ( C— R) equations in the polar form.

Proof: Let f(z) be analyticatapoint z = r ¢'9 and hence by definition,

It f(Z'i‘SZ)—f(Z)
oz

fi(z) =
§z—0

exists and is unique.

In the polar form f(z) = u(r, 8)+iv(r, 0) and let z be the increment in z
corresponding to the increments 6, 86 in r, 6

[u(r+8r,8+80)+iv(r+dr,0+80)]-[u(r, 8)+iv(r, 6)]

fr(z)= 1t

dz—0 bz
u(r+dr, 0+80)-u(r, 8)
f(zy= It
dz—-0 62
cin v(r+dr,0+30)~-v{(r, 8) )
6z—=0 5z

Consider z = ré®. Since z is a function of two variables r, B wehave,
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0z dz
Sz = or 5r+6988
_ d(re®) 3(re?)
= 3 ér + 30 50
ie., 8z=6%r+ire® 50

Since 8z tends to zero, we have the following two possibilities.
Case (i) : Let 88 = 0 sothat 5z = ¢°87r and 85z 0 imply 8r—0.
Now (1) becomes,
Filzy= It u(r+5r12) u(r, 9) It v(r+8r,_g)—v(r,6)
§r—0 dr Brﬂo ear
, reoN = —i0 | Od o dD
ie., f(z)y=e [ar+larj|
Case (ii) : Let 87 = 0 sothat 8z =ir¢ %80 and 8z —0 imply 306 —0.
Now (1) becomes

Q)

F(z) = I u(r, 8+899) u(r, B) i v(r,6+899)—v(r,6)
56 =0 ire®30 5e—>0 ire"s8eo
_ 1-9 It u(r, 8+868)-u(r, 6) il v{r, 0+80)-v(r, )
ire” {5050 56 560 38
"du . ov 1 1du oo
fiz) = z,e:e[ae*"ae&‘,ez‘a[iae ae]
But 1Vi=i/i* =i/-1 =~i and hence we have,
1 au dv | _ _ig| —iou 1 oo
friz)= :e{ " T }“’ [r ) rae}

ie., f’(z)=e‘ie[;§§—;a—e ..(3)

Equating the RHS of (2) and (3) we have,

ol w]_ ie[lov i
ar or r o8 r do

1 dv iau}

Cancelling e~ *® on both sides and equating the real and imaginary parts we get,
% _ 10 and @__13_1101_ tu =v, and rv =-u
* roe or r 00 r— e ro— e

These are Cauchy-Riemann equations in the polar form.
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3.5| Properties of Analytic Functions

Harmonic function - Definition
A function ¢ is said to be harmonic if it satisfies Laplace’s equation V¢ = 0.

Fo %0

In the cartesian form ¢ (x, y) is harmonicif — + —=F =

G Ve

2
Fo, 130 1%

In the polar form ¢ (r, 8) is harmonic if + =
P at v or 2 gg?

Harmonic property

The real and imaginary parts of an analytic function are harmonic.

=0

Proof : We shall prove the result separately for the cartesian and polar form of z.
Cartesian form

Let f(z) = u(x, y)+iv(x, y) be analytic. We shall show that ¥ and v satisfy
Laplace’s equation in the cartesian form

2
Fo, Fo_
P
Since f(z) is analytic we have Cauchy-Riemann equations
du v
a—;‘ =3 | )
v Ju
x oy -+

Differentiating (1) w.r.t. x and (2) w.r.t. y partially we get,
Fu  Fo ?v & u

o2 Oxdy " dyoxr 32

But Gl = v is always true and hence we have
dxdy dyox
Pu_ Pu Py Pu

== — 0r — + —= = 0 = u is harmonic.

ax? T PR
Again differentiating (1) w.r.t y and (2) wr.t. x partially we get,

Pu _820 P % u

Woxr  pt ' P T axdy
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2
But aiz ;x = ai ;y is always true and hence we have
v -%v Fov  Po

or — + — = 0 = v is harmonic.

W a o o

Thus we have proved that the real and imaginary parts of an analytic function when

expressed in the cartesian form satisfy Laplace’s equation in the cartesian form.

Polar form

Let f(z) =u(r, 8) + iv(r, 8) beanalytic. We shall show that u and v satisfy

Laplace’s equation in the polar form

E) 1§_q_3+182¢
o2 T or 2 a2

We have Cauchy-Riemann equations in the polar form

= 0.

&
ar 20
w__w
or 99

Differentiating (1) w.r.t. 7 and (2) w.r.t. 8 partially we get,

& u du 3 821)_ v 9 u

"2 T 1T a0 Taeer T 52
Fo P ‘
But 3738 = s80r 18 always true and hence we have

FPu o -12u

r— +5=— —

A o1 o
Dividing by r and transposing the term in the RHS to LHS we obtain

Pu louw 1
o2 Tor 2o

u satisfies Laplace’s equation in the polar form = u is harmonic.

Again differentiating (1) w.r.t 6 and (2) wr.t. r partially we get

Pu _ P Po @ BTt
T0or a2 a2 = or o0
821! azll

But is always true and hence we have

209r  orae

(D)

.. (2)



ANALYTIC FUNCTIONS 107

1 %v (azv av]
100 | 0 &
or

rooe? o’

Dividing by r and transposing terms in the RHS to LHS we obtain
Pv 1w 1%
at ror 2 ge?

v satisfies Laplace’s equation in the polar form = v is harmonic.
Thus we have proved that ¥ and v are harmonic.

Note : The converse of this theorem is not true. That is to say that we can give examples of
function u & v satisfying Laplace’s equation but not satisfying Cauchy-Riemann equations.

Let u:xz—yz, v=x3—3xy2
8u 8_u _ a’u _ 2 QE)_ _
ax-zx' dy 2 axﬁe’x2 Sy'ay— oxy
v)
Fu_, Fu__,  Po_  Fo___
ax? P ox? e
2 2
az—;‘+a—;‘=2—2=0. az—;+*a—hv~=6x—6x=0
dx dy ox ayz
This shows that # and v are harmonic functions.
. w_w W -
But Cauchy-Riemann equations Pl 3y and e % are not satisfied.

Hence u+iv isnot analytic.

Orthogonal Property

If f(z) = u+iv is analytic then the family of curves u(x, y) = ¢
v(x, ¥) =c,, ¢, and c, being constants, intersect each other orthogonally.

Proof : We know that two cuves intersect each other orthogonally if the tangents at

d
the point of intersection are at right angles. Further we know that E% represents slope

of the tangent and the condition for perpendicularity of two lines is that the product
of their slopes must be equal to — 1.
Consider u(x, y) = ¢; and differentiating w.r.t x treating y as a function of x

we get,
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ou du dy _ dy _ du sou _
8x+ay =0 T @-ml(say)
Similarly for v(x, y) = ¢ dy 9o Jm_ (say)
' ¥ dx T Tu/ gy T
du 7
ox ox
™" = 5 o R
dy oy
But f(z) = u+iv is analytic and hence we have Cauchy-Riemann equations :
aj—@mdgﬂ——a_u Using these in (1) we h,
" 3y % ing these in (1) we have,
o -ou
dy

Hence the curves intersect orthogonally at every point of intersection.

Note : Converse of this theorem is not true and it is illustrated by the following example.

Let u=-:;—2~and v=x2+2y2

We shall show that the curves u = ¢, and v = ¢, (¢, and c, being constants)
intersect orthogonally but # and v does not satisfy Cauchy-Riemann equations.

Consider % =0 P 2y2 = C,

Differentiating these w.r.t. x treating y as a function of x we obtain
_ 2. Y
y{2x) ' dr

_ ) dy _
7 =0 ;2 dy S =0
ie., ny-xzci‘g:o ;4yg~z-=-—2x
Ay _ 2y 2y oy __x
dx_ 12 - x —ml (say) 7 dx_ Zy_mz (S“y)
Now _m-m=g}i-;{=—1

Hence u = ¢; and v = c, intersect orthogonally.
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Further we have, _u=gx*’ a—lfz;«xz-, -Ezzx, Q:;}y
dx ¥y’ dy y> ' ox y
. . du dv ov ou o
Cauchy-Riemann equations =— = =~ and =~ = — 7 are not satisfied.

dx y dx ay
Thus we conclude that u + i v is not analytic.
Note : The result can also be established for the polar family of curves.
If r = f(0) weknow that tan ¢ = r fi_? . ¢ being the angle between the radius

vector and the tangent. The angle between the tangents at the point of intersection of
the curves is ¢, - ¢, and tan ¢, -tan ¢, = -1 is the condition for orthogonality.

Consider u(r, 0) = g and differentiate w.r.t. 8 treating r asa function of 6.

u fl—£+u =0 or ﬂ—_ue
rde 0 a6 u,
do "
Hencetanq)l—rﬂ——ﬂa
-ro,
Similarly for the curve v(r, 8) = ¢,, tan 0, = ”
a

(ru)(rov)
tan ¢1-tan ¢2 = "ﬁ——
0 76

But  ru, =wvy and rv, = —uy, by C-R equations.

(Ue)'(_ue) _
——u =

Now tan¢1-tan¢2= P
6 V0

Thus the polar family of curves u(r, 6) = ¢, and v(r, 0) = ¢, intersect each
other orthogonally.
WORKED PROBLEMS

Type-1 : Finding the derivative of an analytic function.

Working procedure for problems
O Given w = f(z), wesubstitute z = x + iy or z = re'® to find
the real and imaginary parts 4 and v as functionsof x, y or r, 8.

=  We find first order partial derivatives and verify Cauchy-Riemann equations in
the cartesian or polar form to conclude that f(z) is analytic.
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= To find the derivative of f(z) we make use of the fundamental results derived
while establishing C - R equations. They are as follows.

fiflzy=u +iv, [Cartesian form]
fzy=e¢'®(: +iv) [Polarform]

9 We substitute for the partial derivatives and rearrange as a function of (x+iy)
or r¢® whichisz, with the result f’(z) is obtained as a function of z.

1. Showthat w = z + € is analytic and hence find -

>> Bydata w = z+¢*

(x+iy) + *FY)

ie., ¥ +iv
= (x+iy) + &Y

= (x+iy)+ e (cosy + isiny)

ie, u+iv=(x+ecosy)+i(y+esiny)

u=2x+ e cosy v=y+ € siny
u, =1+ ¢ cosy v, = ¢ siny
u, = -¢ siny v, = 1+ cosy

We observe that Cauchy-Riemann equations in the cartesian form u, = vy and

v, = —uy are satisfied.

Thus w =z + £ is analytic

Also we have %—? =f'(z)=u, + 10,

ie., i—f:(l+excosy)+i(exsiny)

=1+ ¢ (cosy +isiny)=1+¢ ¥ =1+
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2. Showthat f(z) =sinz isanalyticand hence find f’(z).

>> Bydata f(z) = sinz

ie.,

ie.,

[ We

u+iv=sin(x+iy)
= sinx cosiy + cosx siniy

u+iv=sinx coshy + icosx sinhy

have

used sin(A+B) = sinAcosB + cosAsinB and

sin(78) = isinh O, cos(i6) = cosh @ ]

u = cosx coshy v, = —sinx sinhy
uy=sinx sindt i v, = cosXx coshy
Cauchy-Riemann equations u, = v, and v = - u, are satisfied.

Thus

u = sinx coshy

f(z) = sinz is analytic.

Alsowehave f'(z) = u_+iv,

Le.,

Using coshy = cosiy and isinty = sin(iy) wehave,

Since

3. Showthat f(z) = coshz is analytic and hence find f'(z)

v = cosx sinhy

f'(z) = cosxcoshy + i(~sinx sinhy)

f'(z) =cosxcosiy — sinxsin(iy) = cos(x+1y)

[ We have used cos A cos B— sinAsinB= cos(A+B) ]

z=x+1y , f'(2)=cosz

>> Bydata f(z) = coshz

ie.,

Le.,

u+iv=cosh{(x+iy)

=cosi(x+iy),

cos(ix — y)

since cosh® = cosi@

cosix cosy + sinix siny

4 +iv = coshx cosy + isinhx siny

u = coshx cosy

u

u
L)

X

sinh x cosy

- coshx siny

v = sinkx siny

v
X

v
Y

i

cosh x siny

sinh x cosy

the

results
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Cauchy-Riemann equations u_ = vy and v, = -u , are satisfied.
Thus f(z) = coshz is analytic.

Alsowehave f'(z) = u, +iv,

ie., f'(z) =sinhx cosy + icoshx siny

Multiplying and dividing by i in the RHS we have,

fi(z)= % [isinhxcosy — coshx siny]

| -

- [ sinixcosy — cos ix sin
; y y

n.ll—l

-sin(ix-y) = % sini (x+1y)

H-IH

ie., f'(z) =

-isinh(x+iy) = sinh(x+1y)

Since z=x+iy , f'(z)=sinhz

Note : Finding u and v from f(z) and later finding f’'(z) as a function of z can
also be done in the following alternative manner.

f(z) =coshz = cosh(x+iy)

o, wtiv=g | Fr Ve D]
| 1 ! 2] —X . .
=§|:ex(cosy+:smy)+e (cosy—tsmy)]

= % (ex+e_x)cosy+i--§— (€f—e *)siny

ie., u+iv = coshx cosy+isinhx siny

= u=coshx cosy and v = sinhx siny
, _ .

Also  f'(z)=u +iv,

sinhx cosy+icoshx siny

&=’ eiy+e_iy+i Fre ™ Yty
- 2 2 2 21

=% I:Ze"'”y~2.e"(“"y)] =

% [ex+iy_e-(x+iy):]

Thus f’(z) = sinh (x+iy) = sinhz

e mm Em ws ws wm o ms e e R Em o Em R W W W Er W Er W o mr W W W o Er Er B W e o mr o mr W W A m e MY W e om ow ow ow owm
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4. Show that w = logz, z # 0 is analytic and hence find %’-

>> [It is convenient to do the problem in the polar form as u and v can be found easily]

By data w = logz. Téking z = ré'® wehave,
u+iv= log(reie) = log7 + Iog(eie) =logr +iflog,e

ie., u+iv=Ilogr+i0 (. loge=1)

u = logr v = 8 and hence we have,
1
u = 7 v, = 0
Uy = 0 Uy = 1
C-R equations in the polar form: ru, = vy and rv = —u, are satisfied.

Thus w = logz is analytic.

Also we have in the polar form,

fr(zy=e'®(u +iv)

_ i (l + I-_OJ =L'e
r re

i 1
Since z=ré® f(z)= =

5. Show that f(z) = z", where n is a positive integer is analytic and hence find its
derivative.

>> Bydata f(z) = z*. Taking z = ré'® wehave,

. n .
u+iv= (re'e) =1" "% = " (cosnB + isinnd)

u=r~"cosn0 v =1"sinn@
ur=nr"—1cosn6 vr=nr"_1 sinn®
ug = —nrsinn® vy = nr"cosnB |
C-R equations in the polar form ru_= vy and rov, = - u, are satisfied.

Thus f(z) = 2" is analytic.
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Alsowehave f'(z) = e 'o (u, +iv)
ie., f’(z)«—-e_’ler(nrnmlcosne+inr""lsinn0)
=n”"1e 7% (cosnb + isinnd)

nrﬂ-—l e—lﬂ_elne

6. Show that w = zz is not analytic.
>> Bydata w = zz. Since z = x - iy we have,

u+iv=(x+iy) (x-iy) = 2 - izy2 = xz+y2

U= 3(2+y2 ; v=20
ux=2x,uy=2y ; vx:O,vy=0
Cauchy-Riemann equations u, = vy and v = ~, arenot satisfied.

Thus w = zz is not analytic.

7. Showthat f(z) = ¢ (cosy + isiny) is holomorphic.
>> Bydata f(z) = ¢' (cosy+isiny)

ie., u+iv=(excosy)+i(exsiny)
u=¢ecosy v=¢siny
u, = € cosy v, = € siny
uy=—€tsiny vy=excosy

C-R equations u x= Yy and v, = ~u, are satisfied.

Thus the given f(z) is holomorphic.

8. Find the derivative of the analytic function 2*
>> f(z)=u+iv = 2 |
log(u+iv) =zlogz = re'® log(reie) = (reie) (logr+i0)

ie., log(u+iv) =r(cosB+isin®) (logr+i0)
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log(u+iv) = (rlogrcos®-r0sin@) + i(rlogrsinO@+r0cosB)

Let log(u+iv) = A+iB (say) . (1)
where we have
A=rlogrcos6-r0sin0 . (2)
B = rlogrsinB+r6cos@ . (3

From(1) u+iv = A8 = AosB+ietsinB

u=e " cosB and v = ¢sinB where A and B are functions of r and 68

Now a—”:— Ba_B+ 9_4,:053

or or or

=t [— cos B - %’? sinBJ

ar

eAcosB eAHsmB eA(“ cosB+%13-smB)

ou .ov 0A . dB . .
3 _+18r -eA{ar {(cosB + isinB) + or (—smB+zcosB)j|

=t [_ (cosB +isinB) + z%—B (cosB+zsmB):|

ie., ar“a = At [ + 1 ar] ... (4)
Now from (2) and (3) we obtain
%:-=(1+logr) cosB-6sind ; %—?z(1+logr)sin8+9cosﬂ
jS+ia—B=(1+10gr)(cose+isin(3)—Bsineﬂ‘(;lc:oslii
dr or
= (1+logr) ei9+i9(cosﬂ+isin8)
=ef9{1+logr+i9]=eie[1+logr+logeieJ
: oA 9B _ g io,] _ ,i6
ie., ar iy = [1+Iog(re )}—e (1+logz) ...(5)

Using (5) in (4) we obtain,

du  .ov ;
cu +!_=eA+rB i eIB

» (1+logz)
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Further A +%® = y+ip = 2?2

CLNY AT R
8r+!8r e’ z*(1+logz)

—igfou  .dv) _

or € (—ar +1“ar]—zz(1+logz)
’ _ 18 . OV

But f'(z)=e (ar“arJ

P(1+i)-y>(1-i)
2+

0 if z=0

if z#0
9. Giventhat f(z) =

show that f(2) satisfies Cauchy - Riemann equations at the origin.

>> Wehave f(z) = u+iv = 1;;5 :23-1»;23 for z# 0
=> _P- ya _Dy where (x
x2+y2 —x2+y2 here (x, y) # (0, 0)

Also u(0,0)=0=wv(0,0) since f(z) =0 when 2 = 0

Upr Uys Uy, D, becomes indeterminate at (0, 0) and hence we shall find the

same from the basic definition.
We have by the basic definition
du ; u{x+dx, y)-u(x, y)

U= = |

¥ 8 dx —0 Ox
Lo, w(x yesy)-u(x, y)
y ay dy—0 Sy

Similarly we can write for v, and vy also.

u(dx, 0) -u(0,0)
5x

_ (5x)3/(5x)2~0_
dx—>0 ox

Now, [ux]w’ 0) =Ml-t-)0
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It u(0,08y) - u(0,0)

[u,l =
¥10.0) Sy =0 83’
ooy —eEyY-o0
dy—0 By
Similarly we also have,
v(dx, 0) - v(0,0)
[v,] = It
#0000 &x
. 3 2—
- (dx ) /(8x) O=l
dx>0 bx
v(0,8y) -v(0,0)
[v,] = It -
y (0. 0) dy—»0 dy
3 2 :
_ o Gy)y/A8yy -0
dy—0 Sy
We observe that u_ = vyand v, =-u, at the origin.

This shows that f( z) satisfies Cauchy - Riemann equations at the origin.
K { B , .
10. Showthat f(z) = T+ cos9+i r- sin®, r # 0 isaregular function of
z=reb Alsofind f'(z).

>> Wehave u = [r+’—cr2-) cosB ; v= [r~—]—:_2—J sin @

ur=[1—~’§] cos 0 vr=[1+-§] sin @
u3=—(r+—k;) sin @ ve=[r—$) cos

Hence rur=(r—-k—z-J cos® and rv =(r+£J sin®
r r r
C~R equations ru, = vy and rv, = —u, aresatisfied.

Thus f(z) is analytic.
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Wehave f'(z) = e"'e(u +iv)

f’(z)=e_ie[[1-—} cose+1[ }smel
[ . 2 }
=¢ (cosG+zsm6)—?(cosB-:sm0)

— i® eiﬂ_ﬁe—i9}=l__k_2_____

(re:G)Z

Since z = reé'® weget f'(z) = 1—(1(2/22)

Type-2 : Construction of analytic function f(z) given its real or imaginary part.
Working procedure for problems

® Given u or v as functions of x, y we find w.,u, 0rv. ,v and consider

. y x’ Ty
f'(z)= U, + 10,

= Given u, we use C-R equation v, = —u, orgiven v weuse u, =, so that
fi(zy=u, - tu, or f'(z)= v, +iv,

& We substitute the expression for the partial derivatives in the RHS and then put
x=2z,y=0 toobtain f'(z) asa functionof z.

S Integratingw.rt. z weget f(z2)
S Similarly in the case of polar co-ordinates r, @ we consider

f'(z) = e i0 (u, +iv,) anduseC-R equation in the RHS, v, = i Ug

. 1 .
given u or u = U, given v,

S Weuse the substitution r = z, 8 = 0 toobtain f'(z) as a function of z.
9 Integrating w.rt z weget f(z).
This method is known as Milne-Thompson method.

Remark: Substitutionofx = z and y = 0; r = z and 8 = O known as Milne - Thompson
substitution instantly converts the RHS into a function of z. This will be highly helpful when
the RHS is in a complicated form. However we can plan to convert RHS which is a function
of x and y intoa function of x + iy = z with the result we get f'(z) asa ﬁmctzon of z.

Similarly in the case of polar coordmates we can plan to convert the RHS which is a function

of r and 9 into a funciton of rét® = 2 with the result we get f' (z) asa function of z.

f(z) is obtained on integration w.r.t. z in both the cases.
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11. Construct the analytic function whose real partis u = log Va2 + _1/2
NZ+ 2 12 _ 1
>> u = log xz+y2=10g(12+y2) =§log(x2+y2)

1 1 x
H = - - Zx =
Y2 24 2+
1 1 ¥
U = — - 2 =
I I A
Consider f'(z) = u +iv. Buto = —u, (C~R equation.)
. : X .y
= —iu, = -1 ... (1
frlzy=u - iu Zp Ry 1

Putting x = z and y = 0 we have,

T S
S T

f(z)=I %dz+c

Thus f(z) =logz + ¢

Remark : Referring to (1) we have,

, _x—iy _ (x—iy) _ 1
f@) 2+yp  (x—iy) (x+iy)  x+iy

, 1
fi(z)= xX+iy

Hence f(z) = logz+c

= % {(without using x = z, y = 0)

12. Find the analytic function f(z) whose imaginary partis " (xsiny + y cos ¥)
>> Bydata v = " (xsiny + ycosy)

vx=ex(siny) + (xsiny + ycosy)e [By product rule)
ie, v =¢ (siny+ xsiny + ycosy) (D
Also vy:e"‘(xcosy—ysiny +cosy)- o (2)

Consider f'(z) = u, +iv,. But u = v, (C-R equation)
ie., f’(z)=vy+ivx

= ¢ (xcosy - ysiny + cosy) + i (siny + xsiny + ycosy)



120 COMPLEX VARIABLES - 1

Putting x = z and v = 0 we have,
f'(z)=€(z+1) since sin0 =0, cos0 =1
flz)=f(z+1)F dz + ¢

Integrating by parts,
f(Z)=(Z+1)¥-fe?lak-rc=(z+1)f-é.+c

13. Find the analytic function whose real part is 3 ;zyf y2 Hence determine v.
>> u=f—~;-2-%-;4;2—2xbydata.

. (el - - -yt -2

* (& + )

A LG i Bk C el A -3

y (2 + )

Consider f'(z) =u_+iv,. But v = — U, (C-R equation)
f’(z)=ux—iuy

Putting x = z and y = 0 we have,
f’(Z) = [ux](z’{)) - [uy](z,(l)

(42 - 2) - (2* -2)22

Le., f(z)= (22)2 -i(0)
42 =222 -2 + 42 22 +27
- A A
5
ie., f’(z)=2§+2§=2z+—j§
f(Z)=._[[2z+-z%sz+c=zz—%+c

Thus f(z)=zz-%+c
To find v, we shall separate the RHS of f(z) into real and imaginary parts.
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ie., u+iv=(x+iy)2-x+iy+c

_ 2 . _ 2(x~iy) _
= (x2 + i y2+2xzy) (x+'iy) (x-i7) +c

=(x2——y2)+2xiy—g;-2xT—;%—)+c

2x . 2y
=(x2—y2—x2+y2J+1(2xy+x2+y2J+c

4 4 3

wriv=| X ¥ =2 120y s omPaay]

2+ P 2+ P

Equating the real and imaginary parts we observe that the real part u issameasin
the given problem and the required imaginary partis givenby,

_D=2x3y+2xy3+2y
Py

_...__..____.._.___.....___..._____________.._____..-____.___

14. Find the analytic function f(z) given u = ¢ * {(xz—yz)cosy + 2xy siny}
>> u=e_x{(x2~—ry2) cosy+2xysiny}
u, =€ (2xcosy + 2y siny) + {(:\t2 - yz)cosy + ?_xysiny}(-*e'x)
u, = e’ {(xz—yz)(—siny) +cosy (—2y) + 2x (ycosy + siny)}
Consider f'(z) = u.+iv . But v, = —u, (C-R equation)
f’(z)=ux—iuy
Putting x = z, ¥ = 0, we have
f(z)= 7 Py 0) ~ i[uy](z' 0)
e, f'(z)=e%(2z)+ (- *)-i.0 =(2z-22)¢?
f(z) = _[(22 -2)eldz+oc
Integrating by applying Bernoulli’s rule we have,
flz) = (22 - 2) (=€) = (2-22) (%) + (=2) (- %) + ¢

=-2z¢ %+ ¢ 26 4050 % 4 2¢7% ¢+ ¢
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15. Determine the analytic function f(z)=u+iv given that the real part

u-—-ez"(xCOSZy—ysinZy)
>> Bydata, u = ez"(xcos2y—ysin2y)

= ezx-c052y+2e2t(xcos2y-ysi:12y)

ux
= ¥ (cos 2y +2x cos 2y — 2y sin 2y )

U, = eh(—2x5m2y~2yc052y—sin2y)

=—¢** (2x sin 2y + 2y cos 2y + sin 2y )

Consider f'(z) = u_+iv, = ux——iuy by C-R equation.
Putting x =z, y = 0 we have,

f’(Z)= [ux](z’o) “i[uy}(z'o)
ie,  f'(z)=ée*(1+22)

flz) = [(1+22)Fdz

22 2 %

f(z)=(1_+22)%—2-e = +ze22-£

Thus f(z) = zeé%+¢
Also  f(z)=u+iv = (x+iy)f(FHiy)

ezx(x+iy)(cos?.y+isin2y)

f(z) = ezx(xcosZy*ysinZy)+iezx(xsin2y+yc052y)

sin 2x

16. Find the analytic function f(z) whose real part is
the imaginary part.
sin 2x
cos h 2y — cos 2x

>> Let u

cos h 2y ~ cos 2x

and hence find

_ (cosh2y—cos2x)(2cos2x)—(sin2x)(2sin2x)

* ( cos h 2y — cos 2x )?
u _ —sin2x (2sinh2y)
¥~ (cosh2y - cos 2x )?

Consider f'(z) = u +iv, = ux—iuy by C-R equation.
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Putting x = z, ¥ = 0 wehave,

f(z)= [“x](z, 0)"i[uy](z, 0)

£z = (1-cos2z)(2¢c0s2z)-2sin?2z

ie., 2 i-0
(l1-cos2z)
Fiz) = 2cosZz—2(c05222+sin223)
(1—<:osZz)2
_—-2(1—cosZz)_ -2 -2

(1-cos2z)2  (1-cos2z) &2,

fe., f(z) = ~cosec’

Thus f(z) = cotz+c

We shall separate cotz = cot(x+iy) into real and imaginary parts to find v.
Consider f(z) = cotz

. . . cos(x+iy)
ie., U+tiv =cot(x+iy) =

sin{(x+iy)

cos(x+iy)sin{x—iy)
sin'(x+iy)sin(x—iy)

ie., U+ip =

%[sin(x—iy+x+iy)+sin(x—iy~x——iy)]

1 cos(x+iy—x+iy)—cos(x+iy+x—i )
2 y ¥ y y

o SinZr+sin(-2iy) sin2x-isink2y
~ cos(2iy)-cos2x  cosh2y—cos2x

: 'V sin 2x J [ -sink 2y J
u+iv = + i

cos h 2y — cos 2x cos h 2y - cos 2x
(It may be observed that the real part u is the given problem)
~sinh 2y
€os h 2y - cos 2x

-__—_-—_-.__-—..-—-—-_--___-__—--.--—-..———..—--_.s-—_——

Thus the required imaginary part v =
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17. If d+iy represents the complex potential of an electrostatic field where

= (2 - ) + y2 find the complex potential as a function of the complex
variable z and hence determme 0.
(2 + )1 - x- 2 N
>> v, = 2x + =2x +
(2 +57) (x2+y’)
(P+y*)0 - x-2y _
=-2 Loy - Y
W TR AR

. Consider f'(z) =¢,+ iy, But ¢ = v, (C-R equation)
i.e. frlzy=w, +iy,
Putting x = z, y = 0 wehave

F(z) = 1,1, 0y * 1% 12, 0

ie., f'(Z)=0+i{22+ (Zz§]=i(22—'z%J
f(z)=ij[22—;12-}iz+c= [z2+—l-)

Thus f(z)'=i(zz+%J+c

Tofind ¢ we shall separate the RHS into real and imaginary parts.
) .2 1

1{(x+1y) +x+iy}+c

1{(x2+i2y2+2xiy)+ .x—iy

i

ie., O +iy

(x+iy)(x-iy)
{(2 - ) + 2xiy) {.;_yzg} e
t(r2 yz)—ny+ yz x2+y2

¢+,-w=(_zxy+;2-+iy—z}+,(£ yz+x2+y2]+c

Equating the real and imaginary parts we observe that the imaginary part v is
same as the given problem and the required real part is

!

it

+c

e ur mm mm e o w RS E e o e o e A W e W R e W o4 kM Er o Em e AL MR o o om S W= | |
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18. Construct the analytic function whose real partis 1% cos 20
>> Bydata u = #* cos280

u, = 2rcos20, uy = ~27sin20
Consider f’(z) = e to (u, +1iv). But v, = :r—l uy (C-R equatioﬁ)

f'(z)=¢"t® (ZrCOSZB +1i- _71 - 2/ sinZBJ

=e 9 (2rcos20 + i-2rsin20)

=2re"®(cos26 + isin20) (D)
Putting 7 = z and 8 = 0 we have,

f'(z) =2z andhence f(z) = _[22 dz +¢c=2% + ¢
Thus f(z) = 2 +c
Remark : Referring to (1) we have, f'(z) = 2r¢~ 19 (%) = 2,69 = 2,
f(z) =2 +¢
19. Determine the analytic function f(z) whose imaginary part is

(r—?) sin@, r # 0. Hence find the real part of f(z) and prove that it is

harmonic.

r

v, = [1+-§22—] sin @, (N (r—-kf—J cos 0

Consider f*(z) = ¢™'%(u,+iv,). But u, = -} Vg (C-R equation )

>> Let v = [r——ki] sin @

f(z)=¢e"8 [% ve+ier
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e, f’(z)=e—i9-|:(1—§} cosB+i(l+—,:-22-Jsin9:l (1)
=e"9[(cose+isin9)—-ri(cose-isine)]
i | jo_K _io ¥ K
= - =1- - =1- =
[e v € } (reae)z z2
ie., f’(z)=1——:25
f(z) = I[I—EZJ dz+c
Z
Thus f(z) = [z+!§) +c
Now, letus find u(r, 6) from f(z) byputting z = re®
ie.,r u+iv = (reie)+m = r(cose+isin0)+7 (cosB—isin0)
re

ie., u+iv = r+7 cosB+1: r-7 sin @

Thus the required real part 4 = (r + *’E_Z"J cos 0

Remark : From (1) we can get f’(z) as afunction of z byputting r =z and 8 = 0.

Next we shall show that # is harmonic.

1
That is to show that u”+%ur+; Ugg = 0 ... {2)

Consider u = (r+-k;~] cos 0

u = (1—-—’:;} cos®, u = 273’& cos O

,
- (r+EJ sin 8, Ugg = — {r+EZ-J cos 9
r r

LHS of (2) now becomes

]

Ug
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gk—z cos 0 + 1 €os0—~ — cos - 1 cosB~ - cos® =0
o’ r . r

3 3

r

Thus u = (r +TJ cos 0 is harmonic.

20. Show that the following function u is harmonic. Also determine the corresponding
analytic function f(z).

u = sinxcoshy+2cos xsinty + x* - y2 + 4dxy .
>> u = sinxcoshy + 2cosx sinhy + x> — y2 + dxy
u, = cosxcoshy ~ 2sinxsinhy + 2x + 4y

u = —sinx coshy — 2cosx sinhy + 2 . (1)

XX

, = sinx sinkty + 2cosx coshy - 2y + 4x

uw=sinxcoshy+2cosxsinhy—2 ...(2)

(1) + (2) gives u,. + = 0. Thus u is harmonic.
Consider f'(z) = u_+ iv,. But v, = — ( C-R equation )
ie., f’(z)zux-iuy
Putting x = z and y =0 we have,
£z = [ )y 0y = il ], 0
ie, f'(z)=cosz + 2z - i(2cosz + 4z)
Integrating w.r.t. z we get
f(z)=sinz + - i(2sinz + 222) +c
ie, f(z)=(1-20)z% + (1-2i)sinz+c
Thus f(z) =(1-2{) (z2 + sinz) +¢

e e e m E o — A = m oW E o m o R B MR R M S e TR R EE M e e e e Em Ee RE em S A e v wm o W me e e

Type-3 Finding the conjugate harmonic function and the analytic function.

We have proved that the real and imaginary parts of an analytic function

f(z) = u+iv areharmonic. ¥ and v are called conjugate harmonic functions.
( Harmonic Conjugates ) Given u we can find v and vice-versa.
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Working procedure for problems

2 Given u, wefind du and du
ox dy
= Weconsider C-R equations du _9dv and dv _ _Qu
0 x y o x dy
. dJu Jdu )
< Substituting for Fyu @ we obtain a system of two non homogenous PDE of

dv Jv
the form 3y =f(x, y); ax—g(x, y)

< These can be solved by direct integration to obtain the required v.
& The same procedure is adopted to find u given v.

< Further u+iv willgiveus f(z) asa function of x,y.
Putting x = z, y= 0 wecan obtain f(z} asa function of z.

21. Show that u = x> - ?;xy2 + 32% - 3y2 + 1 is harmonic and find its harmonic
conjugate. Also find the corresponding analytic function f(z ).

s> u=2 P +3 -3+ 1
u, =307 -3 +6x ;u_ =6x+6

uy=—6xy—6y ;uyy=-—6x—6
uxx+uyy=6x+6-—6x—6=0 Thus u is harmonic.
. . du _dv dv _-du
Now consider C-R equations ax = 3y and ax = oy
Substituting f gﬁanda—uwehave
ubstituting for - ay ,
ov 80 e =
a_3x2--3y2+6x 3, = T(-6xy—6y) =6xy + by
= U=I(3x2—3y2+6x)dy+f(x) ; v=_[(6xy+6y)dx+g(y)
v=3x2y—y3+6xy+f(x) ; v=3x2y+6xy+g(y)

Now we have to properly choosef(x) and g ( v ) to obtain a unique expression for v.
Simple comparison yields f(x) =0, g(y) = - y3

(We look for functions of x only in the second expression of v and functions of y only in
the first expression of v )
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Thus v=3x2y—y3+6xy

The analytic function is f(z)y=u+iv

ie., f(z)=(x3—3xy2+3x2—3y2+1)+i(3x_2y——y3+6xy)
Putting x = z, y = 0 the required f(z) = 2 + 32 + 1.

22. Determine which of the following function is harmonic. Find the conjugate harmonic
function and express u + iv asan analytic function of z.

@ v=logVx+y (b v = cosxsinhy

>> v=logvx+y = % log (x+y)

ool 11 -
x T2 x+y w2 (x+y)2
N S N B
y 2 x+y /) (x+y)2
-1
tov = = 0.

Hence v = logVx+y is not harmonic.

Now consider v = cosx sinhy
vy =-sinxsinhy v = -cosxsinhy
v, = cosx coshy Uy = COSx sinhy
Uy + 0y =0

Thus v = cosx sinhy is harmonic.

To find the harmonic conjugate, we consider C-R equations

u_dv . 90 _-du
ax 3y "™ ax " oy
Substituting for 9o and o we have
dy - Ox
M—cosxcosh ; §—u-sinxsinh
Ix y F e y
= u=_[cosxcoshydx +f(y) u=fsinxsinhydy+g(x)
u =sinx coshy + f(y) ; u=sinx coshy + g(x)
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We have to choose f(y) = 0, g(x) = 0 to get a unique expression for u.
Thus u = sinx coshy
Also  f(z)=u+1iv

= sinx coshy + icosx sinky.
Putting x = z, y = 0 we get

f(z) =sinz, since cosh0 =1 = cos0, sinh0=0

Remark: f(z) = u(x, y) +iv(x, y) can be converted into a function of x+1y
We have f(z) = sinx coshy+icosx sinhy

= sinx cosiy + cosx siniy

sin (x+1iy} = sinz

23. Showthat u = € (xcosy — ysiny) is harmonic & find its harmonic conjugate. Also
determine the corresponding analytic function.

>> u=¢(xcosy — ysiny)
u, =€ - cosy + (xcosy - ysiny)e
ie, u =€ (cosy+ xcosy - ysiny)

Now u_ =¢ -cosy+ (cosy+xcosy - ysiny)e

ie, wu, =¢(2cosy+ xcosy - ysiny) o (D)
Also uy=e"(—xsiny— [ycosy + siny])

= ~¢° (x siny + ycosy + siny)
Now uyy-—-—ex(xcosy+[—ysiny+cosy]+cosy)
ie., uyy:—ex (2cosy + xcosy ~ ysiny) _ . (2
(1) + (2) gives u_, + My = 0. Thus u is harmonic.

-du
ay

|2

_ov

x 0

Now consider C-R equations and g—z =

Q@
=

ie., g—:—:e"(cosy+xcosy-ysiny) . (3
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g—:—=ex(xsiny+ycosy+siny) . o (4)

From(3), v =" [ [ cosy dy + x [ cosy dy - | ysinydy] + f(x)
ie., v=ex[siny+xsiny—(y-—cosy—1--—siny)}+f(x)
(fy siny is carried out by Bernoulli’s rule)

ie., v

¢ [siny + xsiny + ycosy — siny] + f(x)

v=2x¢ siny + e ycosy + f(x) ... {5)
Also from (4) we have,

v=siny [xe* dx + ycosy [é*dx + siny | ¥ dx + g(y)

ie., v=siny(xe"—e")+ycosy€x+siny€x+8(}/)

v

xe*siny + € ycosy + g(y) ()]
Comparing (5) and (6) we must choose f(x}y=0,g(y)=0.

Thus the required v = x¢*siny + & ycosy = & (xsiny + ycosy)
Now f(z)=u+iv

ie,  f(z)=¢" (xcosy - ysiny) + ie*(xsiny + ycosy)
Putting x = z and y = 0 weget f(z) = z¢

Remark: f(z)=u(x,y) +iv(x,y) can be converted into a function of x +iy

f(z) = xe*(cosy + isiny) + ye* (icosy - siny)
=x¢€ (cosy + isiny) +iye® (cosy + isiny)
= ¢" (cosy + isiny) (x+iy)
=& .Y (x+iy) =&Y (x+iy) = €z
Thus f(z)=z¢
24 U 6+iy hr—e;a;;s-e;t-s-t-i;e- complex potential of an electrostatic field whore
v=2- y2 + y2 fma' & and also the complex potential as a function of z.
S yz i
wx=%E= (x2+y2)1—x2x=2x+i—_{_2__
* (2 + 7Y (& + 7
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: ons 00 _ 0¥ dw -3¢
Consider C-R equations ax 3y’ 9x =5y

Substituting for oy and 9y we have,

dy ox
29 22y
il S T ... Q1
3 x Y (12+y2)2 oy
30 Z -y
X e oy —— A a2
oy +(:rt2+y2)2 @
2x dx

From (i) o = -2y Idx—y m*’f(y)
Put xz+y2=t S xdx = dt

-1
Now, ¢ =-2yx-y J % +f(y)=-2xy - y(TJ + f(y)

ié, ¢=auy+;ﬁﬁ?+fw) .. 0)
Also from(2) ¢ = ~2x I dy + _[ (xz—+yzzi)_£ dy + g(x)

. (2 -y*)d

Le., o= -2xy + Imfy.z‘;ézi-g(x)

.- (2 + %) - 2
= -2y + | e gp e

1 2_1£
= - 2xy —— dy - d
+IJc"£+y2 Y !(12-1-3{2)2 y+8(x)
- 1-1Y_ [ dy
_—2xy+xtan o I(x2+y2)2+g(x)
Puttingy=xtan0,dy=xsec9d6
2 tanB

=—2xy+%tan*11

X

- 1oty 2
=-2wy +_tan o xfsm9d9+g(x)

1 1
= -2y + - tan ' Lo~ [(1-cos20)d0 + g(x)



ANALYTIC FUNCTIONS 133

= -2xy + % tan” !

ie., ¢=—?_xy+ltan'lz~%tan"lz+

ie., ¢=-2ry+'——L-+g(x) @)
+

Comparing (3) and (4) we must have f(y)=0 and g(x) =0

Thus the required ¢ = - 2xy + S
P

The complex potentialis f(z) = ¢ + iy

ie. f(2)=[-2xy+xz—#}+i[xz—y2+xziy2}

Putting x =z and y = 0 weget f(z) = i(zz+ %J

Remark :  Compare this problem with Problem - 17 worked earlier wherein, starting from
"W we first obtained f(z) by Milne Thompson method and later got & by separating
f(z} into real and imaginary parts.

It is important to note that if we have to construct f(z) given u or v then
Milne-Thompson method is easier (Type-2). However if we have to find f( z) by obtaining v
given u {or u given v) then the procedure as in Type-3 has to be employed.
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25. Giventhat u = x> + 4x — yz + 2y asthe real part of an analytic function, find vand
hence find f(z) in terms of z. '

>> u=x2+4x—y2+2y

du

ax - +4,ay-—2y+2

Consider C—-R equations du v and dv _ _du
x y x ¥

e, Zo_axaid ;9% gy

Yy x

v= (2 + 4)dy + f(x) 5 v=[ (2 -2)dx+g(y)
ie., v=2xy + 4y + f(x) ; v=2xy — 2x + g(y)

Comparing, we choose f(x) = —2x, g(y) = 4y
Thus the required v = 2xy + 4y — 2x

f(z)=u+iv=(x2+4x—y2+2y)+i(2xy+4y—2x)
Putting x=z and y = 0 we get f(z)=zz+4z—2iz

- e Em e wm mm em e Ee B Em m M e AR W mr e = R AR ER B W e e M M e Ve e e eI MR WS v M M o o o e e = m s m

26. Show that u = (r + —1—] cos 0 is harmonic. Find its harmonic conjugate and also the
corresponding analytic function.

>> U =(r+ %J cos 0

1
We shall show that Uyt 2 ur+—32— Ugg =0 AL
ur=(1-—-}2~]cose u,, --%cose
— (s ) ane _ 1) ee
g = — r+r sin Ugg =~ r+r cos
LHS of (1) now becomes,
2 1 1 1 1
= cosB+ — cosB—-—5 cosB- — cosO— 5 cos® =0
r r P r P

Thus the given u is harmonic.

To find v, letus consider C~R equations in the polar form
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S
{3t
|

ru, =1, ; =

ie., Vg = (r— %—J cos 6 ;

;—> v=J(r—l] cos0dO+f(r)

u
*nlv-'

-~

ie., v=(r— %J sin®+f(r) ; —%) sin8+g(0)
Comparing, we must have f(7) = 0 and g(8)=0
Thus the required harmonic conjugate v = (r— %J sin 6

Alsowehave f(z) = u+iv

ie., f(z):(r+ -}Jcoseﬂ'(r-%) sin

It

r(cosB+isinB)+ % (cosB—isinB)

; 1 _; ; 1 1
re’e+?e R Y AL T g

rét® 2

Thus f(z) = z+ i* is the analytic function.

27. Find the analytic function f(z) = u+iv given u — v = € (cosy ~ siny)
>> u-v=¢(cosy - siny)
We shall differentiate w.r.t. x and y partially.
u, -v, =¢ (cosy - siny) )

and uy—vy=ex(¥siny—cosy)

Using C-R equations for the LHS of this equation in the form ,=-v, and
v, = U, we have,
-9, - u_=¢€ (-siny - cosy)

or u + v, =é(siny + cosy) . (2)
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Let us solve (1) and (2) simultaneously for u, and v,
(1)+(25: 2u, =2¢é" cosy Sou, = excos-y
(1)-(@): -2v, = -2 siny s v, =€'siny
Wehave f'(z) =u, +iv
f'(z)=¢cosy + i siny = ¢ (cosy+isiny) = ¥ =&Y = &

28, Find the analytic function f(z) as a function of z given that the sum of its real and
imaginary parts is X - y3 + 3xy (x-y).
>> Let f(z) = u + iv be the analytic function and we have by data,

u+v=2x -y + 3%y - 3

Differentiating w.r.t. xand y partially we have,

u, + v, =32 + bxy - 3y 1)
uy+vy=—3y2+_3x2—6xy
Using C-R equations for the LHS of this equation in the form u, = -0, and
v, = u, we have
-vx+ux=—3y2+3x2—6xy 2

Now (1)+(2) gives, 2u_= 6% - 6% - u =3 — 3y
(1) - (2) gives, 2v, = 12y o v, =6y
Consider f’(z) = u_ + iv, = (35 - 3y°) + i(6xy)
[Note: f'(z) = 3(P-y?+2xiy) = 3(x+iy)* = 32]
Putting x=z and y = 0 weget f'(z) =32
f(z)= I322dz+c

Thus f(z) = 23+ ¢
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2. If f(z) = u+iv isanalytic find f(z) fu-v = (x-—y)(x2+4xy+y2)
>> u—u=x3+3xzy—3xy2—y3 on simplification.

ux—vx=3x2+6xy-3y2 D)
u,-v, = 32 -6xy-32
But , =~v, and v, = u, by C-R equations and hence we have,
~v~u =3P —6xy-3,2 @
Let us solve for u, and v, from (1) and (2).
()+(2) : =20 _=6(2=y) or v, = 3(y*-22)
(1)-(2) : 2u, = 12xy or u, =6xy

Wehavef’(£)=ux+ivr

e,  f'(z)=6xy+i3(y-2)

Putting x =z and y = 0 weget f'(z) = -3iz2
féz)y = [-3iz2dz+c

Thus f(z)=-iz%+¢

30. If f(z) =u(r, B)+iv(r, 0) is analytic and given that
u+v = é(cosZB—sinZB), r # 0 determine the analytic function f(z).
>> u+v=*r-12-(cos26-sin28)

Differentiating partially w.r.t r and also w.rt § we have,

-9 ) '
ur+vr=*r?(c0529—sm29)' (D
= 22 (sin20+cos 20
ue+ve-r2(sm + cos )

Using C-R equations : Vg =74, and —uy = rov_ wehave

-2 .
“rvtru = 7(3m29+cos26)
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or ur-vr=:r?2(si1129+c0526) ...(2)

Let us solve for u, and v, from (1) and (2).

. -4 -2
(1)+(2) gives 2u_ = —5 cos20 or u =7 cos26

2 K
. 4 2
(1)-(2) gives 20r=?sm29 or vr=;._;sm29

| ; _ —ip :
Wehave f'(z) =€ '"(u,+iv,)

_n 0 - .
f'(z)= 2:3 (cosZB-isirnZ'B):Fz.*3'3'B

-2 -2 1
ie., (2)=—53 =7 = 2y=-2 V—dz+c
f (ré®yY 2 J(2) J‘23
1
Thus f(z) = —+¢
' z
. . -au d9v {ou  dv).
31. If u and v are harmonic functions show that [By - ax) + i [ax + ay] is
analytic. '
dJu 0v du dv
>>LetP—ay—-ax, Q= x+ay

To prove that P+iQ is analytic we shall show that C-R equations in the form
ap_3Q _ 3Q _=-dP
ax 0y dx dy

2 2032 (3 dt) 2 (3, )

are satisfied.

C"m‘der‘a"i“ay:ax dy 0Ox dy | dx oy

=a2u __azv‘_a2uﬂazv - _ 22_v+§2_0 — 0
dxdy 3 9dydx 3y 3t oy
since v is harmonic.
3P 3Q 3P _9Q

ax 3y "0 % ax " ay
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Also consider — + — = +ax 3x é—y

azu_ v +82u+ v
dydx g 2 dxdy

dP 9Q i(au av) _a_(au BUJ

=0, since u# is harmonic.

dP 9Q aQ -4dP
— + T = 0
dy dx X ¥
Thus P+iQ isanalytic.
Note : ( Alternative version of the problem )

gu ov ou av
¥ = dy ox and Q= o ay

show that P +iQ is analytic given that 0 +iv is analytic.

32. If f(z) isanalytic, show that [— ayz} lf(z)| =4|f(z) |2

>> Let f(z) = u+iv beanalytic.
1F(2) ] = ViZ+? or | f(z) |2 =+ 0% = ¢ (say)
To prove that [i+i}¢=4|f'(z)|2
9 Ay
Thatistoprovethat¢xx+¢yy=41f’(z)|2

2 + v* and differentiate w.r.t. x partially.

Consider ¢ = u
¢, =2uu + 2o =2[uu +vy]
Differentiating w.r.t. x again we get

O, =2[uu, +u +vU, +02]
Similarly we can also get
=2[uu +12 +op +v§]

¢yy vy y vy
Adding (1) and (2) we have,

= 2 2 2 2
O +¢yy"’ 2{u(u, + uyy) +v(vﬂ+vyy) + u, +vx+uy=|- vy]

(1)

.. (2)

.. (3}
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Since f{(z) = u + iv isanalytic, ¥ and v are harmonic.

Hence u , +u =0, v + v _ = 0. Further wealsohave C-R equations:

vy xx wy
R
Using these results in th.: RHS of (3), we have
= 2 2 2 2
¢xx+¢w—2[u-0+v-0+ux+vx +H(-v, )+ (u,)]
. _ 2 27 2
ie, G, +0, =2[2u7 +200] =4[] + v7]
But f'(z)=u, +iv,
P _ 2 2 ’ 2 _ .2 2
L (z) | -\lux+vx or |f'(z)|"=u;+ v
Using this in the RH.S of (4) we have ¢ + =4 £ (z) |2

This proves the required result.

33. If f(z) isaregular function of z show that
2 2
A o _ 2
PO PV IO
>> Let f(z) = u+iv be the regular (analytic) function.

[f(z)| = N + 0% = ¢ (say)

2
a0 d¢ 2
We have to prove that [ax] + [ayJ = |f'(z)]

That is to prove that ¢§ + ¢§ = [ f'(z) | where ¢ = Vu? + v*

2 4 o (squaring ¢ for convenience)

Consider ¢2 =u
Differentiating w.r.t. x partially we get,

200, =2uu + 2vv,_ anddividing by 2 we have,
0o, =uu +vo,
Similarly we can also get

=uu -~ v
¢¢y uy Y

Squaring and adding (1) and (2) we have,

(1)

. (2)
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02 (¢2 +¢§) = (uu, + oo ) + (uu

2
+ vy
y y)

— 22 2. 2 2.2

=(uu, + vTU, + 2uvuxvx)+ (u U, + vzvj + 2uvuyvy)
Since f(z) = u + iv is analytic, wehave C-R equations : U, = -0, and v, = Uy
By using these in the second bracket of the RHS we have,

2,2 2y _ .22, .22 2.2 2.2
" (o, + ¢y) =(uu, + 07U+ uwvu v ) +(uU + vt Ul - 2uvu v )

=u2(ui+vi)+vz(u§+vi)
= (ui + vﬁ) (u2 + vz)
But ¢* = u® + o° and using this in the RHS we have,
0% (07 +02) = 0 (i + V)
or ¢§+¢§=ui+v§ .. (®
But f'(z) =u_+iv,
A Af@ ) =NE R E o | f ) P
Using this in the RHS of (3) we get ¢§+¢;= |f’(z)|2
This proves the required result.
34, If f(z) isanalytic show that log | f(z) | is harmonic.
>> Let f(z) = u+iv be analytic.
log | f(2) | = log Vi + o = % log (4 + 9%) = ¢ (say)
We have to show that ¢ is harmonic. Thatis ¢, + ¢yy =0
Consider ¢ = % log(u2 + 02) or 2¢ = loge(u2 + 1)2)
or AP =1+

Differentiating w.r.t. x partially we have,
2. 2¢, =2uu +2vv,  and dividing by 2 we get,

5'2"’c|:J{=:¢:¢J|r~i-1.';zJ:r .. (1)

Differentiating again w.r.t. x by product rule we have,
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e” d)xx +¢x e2¢2¢x =uu, + ui + U0, + vi

ie, 0 +28%02=uu_+vo, + 1+ )
Similarly we can also get
€2¢¢w+2£2"’¢§=uuyy+vvyy+u§+v§ .. (3)

Adding (2) and (3) we have,
¥ (0, + 0,0+ 288 (07 +0))
— 2 2
—u(uxx+uyy)+v(vxx+vyy)+ux+vi+uy+v§ ... (4)
Since f(z) = u+iv isanalytic, u and v are harmonic.

uxx+uyy=0and vxx+vyy=0.
Alsowehave C-R equations : U, = -0, and v, = Uy
Using these in the RHS of (4} we have

A0 +6 1+2% (02 +02) =u-0+0-0+ 12+ 02+ 0%+

xx vy x v x x x x

ie., e2¢(¢xx+¢yy)+2e2¢(¢§+¢§)=2(u§+v§) ... (5)
But we have from (1) &0 b, =uu, +0v0,
Now by squaring we have,

2042 42 _ 2 _ 2 2

(e°") ¢x—(uux+vvx) —uzux+v v§+2uvuxvx
ie., o tt:fc:u2 ui+vzvi+2uvuxvx ...{6)
Similarly we can also get,

4¢ ,2 _ 2 2

e tby-u uy+vzv§+2uvuyvy
But u, = -0 and v, = Wy by C-R equations

4¢ ,2 _ 2.2 2 _

e ¢y-u vx+7)2ux 2uv(v,)(u,) .. (@
Adding (6) and (7) we have

(924 0d) =+ o) + 2 (4 ?)

ie, (o4 Qp;) = (12 + 12) (4F + 0F)
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Using w? + v* = 2 inthe RHS we get,
e (¢i + ¢;) = (uf, + vi) e”

Dividing by 2 we have, 2 (q’i + ¢§) = ui + vi

Using this result in the second term of the LHS of (5) we obtain,
P (¢, + ¢yy) + 2 (ui + vi) = 2(u3 + vﬁ)

ie, (0, + ¢,,)=0. Dividingby e2® we have
o, + ¢yy= 0. Thus ¢ is harmohic.

This proves the desired result.

35. If &(x, y) is a differentiable function and f(z) = u(x, y)+iv(x, y) isa
regular function , show that

2 2

[%g}z+[g_$]2=l[%J +[3—2] ’If’(Z)IZ

>>Letustreat ¢ asacomposite functionby regarding ¢ tobeafunctionof u and v
where u and v are functionsof x, y.

By chain rule we have,

30 _203u d03v 20 _263u 30 dv

—_——t— = — — 4 —— —

dx Odudx odvdx dy du dy v dy
ie., ¢, =01, +0,v, and ¢y=¢u“y+¢v"y

o2 + 62 = (0, u,+ 6,07+ (-0, v, + ¢,u, ), sinceu, = v, andv, = u,
Hence 67+6] = 0 (17 +20)+ ¢ (5 +7%)
or  +o] = ($+83) (wi+7L) (D)
But f'(z)=wu +iv, . |f’(z)|2=ui+v§
Now (1) becomes ¢+ #; = (¢ + ¢}) | /' (2) |

This proves the desired resuit.
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3.6] Application to Flow Problems

We recapitulate some definitions and concepts already discussed in Vector Calculus.

Vector differential operator V = % i+ 5@; j+ 58—2 k
If ¢(x,y, z)isa scalar point function and A = A i+ A,j+Ayk isa vector point

functionof x,y,z we have the following.

., d¢. 0

V¢ = grad ¢ ———;1+ay]+azk

dA, dA, 0JA

'y = 1 2 3

V-A =divd = 5%ty t oz
i ]k
i > |9 9 3@
VxA = CurlA = | 575 9y 9z
Al A2 A3

2 2
v2 ¢ = V-V = Laplacianof o = 28+ &8 &9

o X ay2+a22

Geometrically, grad ¢ is a vector normal to the surface ¢ (x, y, 2} =¢, ¢ being
a constant.

If I_/)( X, ¥, z) represents any physical quantity, div V)gives the rate at which the
physical quantity is originating at that point per unit volume.

Supposing that a fluid is moving such that its velocity at any point is given by
(x, y, z)thendiv %4 gives the total gain in the volume of the fluid per unit volume
per unit time.

div V = 0 s the continuity equation of an incompressible fluid. Further a vector
A" whose divergence is zero is called a solenoidal vector.

Curl"_}means rotation. A vector function Z) (x, y,z) is said to be irrotational if
curl A'is a null vector. Furtherif A(x, y, z) is irgtational, then there always exists
a scalar function q)(x,__y, z) such that V¢ = A. Then ¢(x, y, z) is called
the scalar potential of A. 7 C
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Velocity potential, Stream function, Equipotential lines, Stream
lines and Complex potential

We discuss some application aspects based on the two properties of analytic functions.

Let us consider the irrotational motion of an incompressible fluid in two dimensions
and suppose that the flow is in planes parallel to the x-y plane. Then the velocity
(x, y) of a fluid particle can be expressed as

?=vli+vzj ()

Since the motion is irrotational there exists a scalar function ¢ ( x, y ) such that

- .90, 0.
?-V¢(x,y)_ax1+ay] ... (2)

Comparing (1) and (2) we have,

Q
R=d
Q
=

v, =— and v, = — ... (3)
The scalar function ¢ (x, y) which gives the velocity components v, and v, is called
the velocity potential.

Further, since the fluid is incompressible we have div V=v.V=0

(2, D) (20, 20 _
Thatls,(axz+ay]] (ax1+ay]]-0

o ¢ . . :
or —+—= =0 = ¢(x, y) is a harmonic function.
3l 3y y

That is to say that the velocity potential ¢ (x, y) is harmonic.

Hence ¢ (x, y ) can be taken as the real part of an analytic function,
w=f(z)=0(x, y)+iv(x,y) @

Y (x, y) is the conjugate harmonic function & we give an interpretation for the same.

Consider ¥ (x, y) = cand differentiate w.r.t. x treating y as a function of x.
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or dy = 0x = 9y by using C-R equations.

That is, d}; = — by using (3).

5

dy

Since 7, Tepresents the slope at any point of the curve y(x, ¥) = ¢, we conclude

that the resultant velocity V = | Vl Vo? 1+ v of the fluid particle is along the
tangent to the curve y(x, y) = c. The fluld particles move along this curve.

W (x, y) iscalled the stream function.

The family of curves ¢ (x, y) = constant are known as equipotential lines and the
family of curves y (x, y¥) = constant are known as stream lines.

Recalling the second property of analytic functions, [Orthogonal property :Article 3.52]

we conclude that the equipotential lines ¢ (x, ¥ ) =constant and stream lines
¥ (x, y) = cosntant intersect each other orthogonally.

"~ Also we have from (4),
dw =f'(z) = —Q +1i %l"— ( Refer Theorem-1 )
Using C-R equations we have,
dw _ oy _99_ .09
dz =f(z) = dx lay
dw

or E=f’(z)=vl—ivz,byusing(3).-
dw =|f(z)| = Vv%+v§ = | V], since V = v i+, ).

That is to say that the magnitude of fluid velocity is equal to the modulus of f’(z).

The flow pattern fully represented by w = f( z) is called the complex potential.
Note : In electrostatic problems ¢ (x, y) = cyand y (x, y) = c, are respectively known
as equipotential lines and lines of force.

In heat flow problems ¢ (x, y) = c; and W(x, y) = c, are respectively known as
isothermals and heat flow lines.
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WORKED PROBLEMS

36. An electrostatic field in the x-y plane is given by the potential function ¢ = 3x° y- y3.
Find the stream function.

>> ¢ = 3 vy, by data.

99 _ 99 32
Tx = 6xy and 3y = 3x 3y2
d¢ _dy a0 dy ,
— = — = - -R .
But Tx y and ay Tx by C - R equations
WV gy, W00 402 g0
Hence y-6xy, P ay-3 3

= w=fﬁxydy+f(x) ; w=.f(3y2-3x2)dx+g(y)

e, y=3P+f(x) s oy =3t g (y)

Let us choose f(x) = e

and g(y) = 0, by comparison.
This will giveus y = 3x° - x°

Thus the required stream function y = 3xy” - °

37. Ifthe potential functionislog (* +y%), find the flux function and the complex potential.
>> Let¢(x, y) = 10g(x2+y2)

TR TR
But %% = % and 3_2; —%—% by C-R equtions.
Hene 3—‘;:;%}{-2* ; %%=x2—f!:/2
= wz_f;ix—yzdy+f(x) ; w=j xz;fyy—zdx+g(y)

- 1, -
ie., q;sz-% tan 1‘Z-ﬂ‘(x) R T —Zy-ytan 1[§]+8(y)

or lu=2tan_1(¥)+f(x) ; \|f=—2tan_][§:~]+g(y)

By choosing f(x) = Oand g(y) =0 we have,
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w = 2tan" ! (y/x) or y = ~2tan” ] (x/y)
Thus the required flux function is y = 2tan™ ! (y/x)
Further the complex potential isw = f(z) = ¢+iy
Thatis, w = f(z)} = log(x2+y2)+i-2tan"1(y/x)

By putting x = z andy = 0 weobtain w = f(z) = Iog22 =2logz
Thus the required complex potential w = f(z) = 2log z

38. Provethat¢ = x2—y2 and y = ?l? are harmonic functions of ( x , y ) but are not

harmonic conjugates

>> Consider¢ = x* - yz

2 2
20, 20, Pe_, Po_
X ¥ 9x d
—xg —;—2 2 =0 = ¢isharmonic
: Yy
Next d =
ext consider 21y
LA —Zry
0x (x +}{2)
Py _ (PP (-2 +2xy-2(L+y7) 2%
1% (x+y")t
Py _ 2P+ [-(P+P)+ 4]
9 % (3(2+y2)4
o’y _ 2y (3¢ -y )
3 x? (x2+yz)3

Also Ay _ (PP l-y2y Py
’ ay (x2+y2) (x2+y2)2
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Py (PPl - (- 2R+ ) 2

0y (242
Py _ 2P+ [~ (P+y?)-2(P- )]
3y’ (2 + 2y
Py _ 2y (=37 +y) @
3y’ (F+p)
2 2
Adding (1) and (2) we obtain ga—;}+§a—;2ui =0 = W isharmonic.

Let us find the harmonic conjugate of ¢ = - y2

We obtain 9¢ = 2x and a—¢z—2y

dx dy
00 Ay 0 A, e
Since 5x " 3y and y - " ax by C - R equations, we have,
CAS oV _
dy =X ! dx =%

= W= J.?.xdy+f(x)- ;o= f2ydx+g(y)
e, W= 2xy+f(x) ;o w=2xy+g(y)
By choosing f(x) = 0 = g(y) weobtain y = 2xy.

The harmonic conjugate of ¢ = P-yisy=2yand y = xz—y?»by data.
+

Thus we conclude that ¢ and y are harmonic functions of ( x, y )} but are not
harmonic conjugates. ‘

39. In a two dimensional fluid flow if the velocity potential ¢ = e * cosy +xy,
find the stream function.

>> ¢ =¢ “cosy+xy, bydata.

30 x_ . 30 _ -
eyl cosy+y and 3y - e "siny+x
a0 oV a0 gy .
= = - -R .

But o y and 3y Py by C - R equations
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=%
=
Q

Hence =-¢ *cosy+y, —— =€ “siny-x

X

Q

Yy d
= W=I(-e_xcosy+y)dy+f(x); Y = I(e“"siny—x)dx+g(y)

Cx x. X
Y=g xsmy+'l§+f(x) ; y=-e xsmy—?+g(y)
2

By choosing f(x) = —~§ and g(y) =J§ we obtain y = -—e"‘siny+'1;—2—£2w

Thus the required stream function y = % (¥ -22)-e Fsiny

40. If Q(z) =log (z—a), z # a represents the complex potential, show that the
equipotential lines are a family of circles and stream lines are a family of straight lines.

>> Q (z) =log(z-a)
¢+iy = log(x+iy—a) =log[(x—a)+iy]
Using log (A+iB) = log VAZ + B2 +itan_1(B/A)wehave

d+iy = iog\/(x—a)2+?+itan_1 [—L}

x~-a
= ¢ = logV(x-a) +y andw=_tan'1{;:_%]

¢(x,y) = constant and y (x, y) = constant respectively represents equipotential
lines and stream lines.

Thatis, log V(x—-a )’ +3* = ¢, (say) and tan_l[;_La:| = ¢, (say)
or \1’(J\t-—¢z)2+y2 = ¢1 and 2 = tanc,

x-a
or (x—a)?+i7 = (1) and y = (tanc,)x~atanc,
or (x—r:t)2+y2=r2 D
and y=mx+c . {2)

where r, m, c are all arbitrary constants. It is evident that (1) is a circle with centre
(a, 0) and radiusr and (2} is a straight line.

This proves the required result.
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EXERCISES
Show that the following functions are analytic and hence find their derivative,
1 & 2. cosz 3. sinhz
4 2+ 2 5. sin2z

Construct the analytic function f(z)=u +iv as a function z using the
following data.

6. u=¢ (xcosy — ysiny) 7. u=¢" (xcosy + ysiny)
8. u = xsinx coshy - y cos x sinhy 9. u = log Va2 + yz, f(1)=2i
10. v =¢ ¥ (xcosy + ysiny) 1n. =Y
¥y * ysiny x2+y2

12.v=(r—l]sin8 13. p = =508

r _ r

2 cos x cos hy .

4. u = 15. u + v = (x+y) + € (cosy +siny)

cos 2x + cos h2y

Show that the following functions are harmonic and find the harmonic conjugates.
Also find the corresponding analytic function {16 to 20]

16. u = ¢ cosy + xy 17.M=(x—71)3—3xy2+3y2

*1

18. u = — cos® 19. v = 2xy - 2x + 4y

r S

20, v = ¢ ¥ sin2x

21. If f(z) = u + iv is analytic and v= 3x% vy - y3 find u. Also verify that
u=c and v = ¢, ¢; & ¢, areconstants intersect each other orthogonally.

22. Show that f(z) = ;ﬁ—:—-’»yy—z- is holomorphic except at the origin.
+

23. Show that f(z) = 2z + 3z is not analytic.
24. Show that an analytic function with constant modulus is itself a constant.

25. Determine which of the following function is harmonic and find its harmome :
conjugate. Also determine the corresponding analytic function. : :

(@ u = & {xcos2y — ysin2y) ) u= e (x cos 2y ——y’sinZyS
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ANSWERS
1. 2% 2. -sinz 3. coshz
4. 2z+2 5. 2cos2z 6. z¢
7. ze * 8. zsinz 9. logz+2i
10. ize * 1. i/z 12, z+(1/2)
13. 1/z 14. secz 15, z + ¢

16. ¢ siny —%(f——yz) ; & - i(2/2)

17. 3xzy—6xy+3y—y3 s (z=1) 18, _S;,ne ;"i‘

19. x2_y2+ 2(2x + y) ; 2+ (4—-2i)z 2. ¢ cos 2x; 2
21. u=::c?’-3ry2

25. (a) v = X (xsin2y + ycos2y) ; ze”



